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A model in statistical physics is presented based on assigning non-Abelian phase
factors to the turning points of polygons in three dimensions. This model allows
for an exact solution and exhibits an unexpectedly rich phase structure. The
model as well as the solution are obtained by a generalization of the methods
of Kac and Ward and by mapping the problem to a Markov process as was
done by Feynman for the two-dimensional Ising model.
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1. INTRODUCTION

One of the most fascinating models in statistical physics is the Ising model.
Originally it was designed to understand the critical behavior of ferro-
magnetic materials. However, it turned out soon that despite its simple
appearance, the construction of the solution would be extremely com-
plicated if the dimension of the lattice is more than one and so far it has
not been possible to obtain the free energy in closed form for a three
dimensional lattice. A major achievement was reached by Onsager and
Kaufmann, who solved the Ising model in two dimensions.(1, 2) The solu-
tion was constructed using transfer-matrix methods. An alternative solution
strategy was initiated by Kac and Ward, (3) who considered combinatorial
methods. This solution strategy leads to the requirement of finding a huge
determinant. The method of Kac and Ward has been simplified con-
siderably by Feynman, who translated the finding of the determinant into
the evaluation of weighted sum of paths, and conjectured an unproved
identity concerning the canceling of unwanted paths in the sum. In prac-
tice, the sum can be performed by interpretating the problem as a Markov
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random walk process. The unsolved identity was proven by Sherman, (5)

whereas Feynman's contribution is very neatly explained in ref. 5.
With the advent of lattice gauge theories there was a revival of interest

in the Ising model because it served as a playground for studying these
theories using a Z2 local symmetry. Moreover, it was demonstrated by
Kavalov and Sedrakyan, that there is also an intimate connection with
models of surfaces with fermionic structure.(6) In particular, in this work,
a generalization of the Kac-Ward factor for the three-dimensional Ising
model is proposed in which elements of the group SU(2) are considered.
The authors refer to unpublished work of Polyakov and Dotsenko.
Fermionic models in three dimensions have also been considered by
Bazhanonov and Stroganov. (7)

A closed-form approximation for the three dimensional Ising model
has been proposed by He, Xu and Hao in ref. 8. These authors generalize
the phase factors which are associated with the turning points of the
polygons in a three dimensional lattice to elements of the group SU(2). In
this way they arrive at a closed-form approximation for the free energy.

In this paper, a new model in statistical physics is presented. The
model is obtained by combining the approach of Kac, Ward and Feynman
with the approach of Kavalov, Sedrakyan, Polyakov and Dotsenko. The
model is not equivalent to the three-dimensional Ising model, however
it resembles some similarity with the 3D Ising model. For example, the
value of the critical coupling is, K*=0.2402186..., whereas for the 3D
Ising model, K*=0.2216595... .(9) In fact, the model is equivalent to the
approximate solution that was obtained by He, Xu and Hao. In fact, their
model, being defined as an approximation of the three-dimensional Ising
model, can be viewed as a statistical system without reference to the Ising
model and be interpreted also as a definition of a model for random
polygons with non-abelian phase factors.2

The new model essentially generalizes the Kac�Ward phase factor,
associated to each turn on a 2D lattice, to non-abelian unitary group
elements on a 3D lattice. Therefore, we name the new model NARP (non-
abelian random polygons). The model can be solved exactly and an expres-
sion for the free energy will be derived. It turns out the phase structure
exhibits unexpected features. Therefore, we believe that our model and
solution method is interesting enough to be presented since it may be
generalized to higher dimensions and larger groups. In particular, our
solution method which is based on the application of modern software
technologies, allows for such generalizations.
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This paper is organized as follows. Since the Ising model has played
a major role in setting up the model, we give a brief summary of the Ising
model and the solution method relevant for this work in Section 2. The
NARP model is defined in Section 3. We set up the conditions for the
(non-abelian) phase factors which are associated to the moves along
the polygons in a lattice. In this paper we will consider simple cubic lattices
but this restriction is not essential. In Section 4, the closed-form solution
is obtained. In Section 5, the free energy of the solution is analyzed and in
Section 6, a comparison with related work of He, Xu and Hao is discussed.

2. DEFINITION OF THE ISING MODEL

The Ising model consists of a D-dimensional lattice with sites, i. In
each site is defined a spin si , which can interact with its nearest neighbors.
The value of the spin variable can be +1 or &1. The energy corresponding
to a definite spin configuration is

H(s1 , s2 ,..., sN)=&J } :
(ij)

sisj (1)

where (ij) runs over all distinct pairs of neighboring sites of the lattice.
The number of sites is N and J is the strength of the interaction. The parti-
tion function at inverse temperature ; is given by

Z=:
s1

:
s2

} } } :
sN

exp&;H(s1 , s2 } } } sN) (2)

The Helmholtz free energy per spin is

f= &
1
;

lim
N � � \ 1

N
log Z+ (3)

In all solution methods, the Pauli matrices _x , _y , _z play an important
role.

_x=_0 1
1 0& _y=_0

i
&i
0 & _z=_1 0

0 &1& (4)

2.1. The Two-Dimensional Ising Model

In this section the solution of the square two-dimensional Ising model
based on the method of Kac is briefly summarized, since it serves as a good
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starting point for our three-dimensional case. Let us restart with the parti-
tion function

Z= :
all states

exp(&K7*sisj) (5)

with K=;J. In this formula the star corresponds to all neighbouring pairs
in the lattice and Z can be rewritten as

Z= :
all states

6* exp(&Ksisj) (6)

Since exp(&Ksi sj)=exp(&K ) if si sj=1 and exp(&Ksisj)=exp(K ) if
sisj=&1, we find that

Z= :
all states

6*C0(1+s isjT ) (7)

where C0=cosh(K ) and T=tanh(K ). We can extract the factor C0 from
the sum, by noting that there are ND bonds in a D dimensional lattice of
N sites.

The partition function can then be viewed as a sum over all closed
graphs in a D-dimensional lattice, such that in every graph each bond can
contribute only once. The partition function becomes

Z=2NC ND
0 :

L

d(L) T L (8)

where the sum is over all closed graphs on the lattice and d(L) is the
number of closed graphs of length L that can be put on the lattice. The
summation over self-avoiding loops is a very difficult task to perform. An
alternative approach is applied, whereby all loops are allowed but a weight
factor is assigned to each loop, such that effectively the self-avoidance is
realized by canceling weights. For the two-dimensional Ising problem a
correct set of weight factors is provided by the following rules:

For each closed loop one should assign

v a factor ,=e?i�4T for a turn to the left,

v a factor ,=e&?i�4T for a turn to the right,

v a factor ,=T for going straight-on,

v a factor ,=0 for a U-turn.
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Note that the factors e?i�4 and e&?i�4 are elements of the group U(1) which
is isomorphic to SO(2), i.e. the group of rotations in a plane. The choice
of the angle, ?�4, is such that a full rotation over 2? results into a weight
factor &1.

The basic idea is to replace the summing over all self-avoiding loops,
by summing over all loops where the phase factors assigned to the loops
cancel out unwanted graphs. The sum over all loops can be performed
by solving a recurrent random-walk problem.(12, 13) A closed graph may
consist of several polygons. The composition is such that no bond is used
twice. In order to perform the sum, a specific point (the origin) on the
lattice is chosen. From now on we will consider the factor

Z1=:
L

d(L) T L (9)

The corresponding part of the free energy is related to Z1 by Z1=
exp(&;Nf1), i.e. the total free energy reads

f= f1&
1
;

log(2C D
0 ) (10)

Since the free energy is proportional to the number of lattice sites, we may
consider f as the free energy per lattice site. Each polygon occurs L times
in the summing over all sites. Since only different polygons are counted, we
obtain

&;f1=:
L

h(L)
L

T L (11)

where h(L) is the number of ways that one can return to the starting point
in L steps without traversing the same bond twice.

It is evident that

&;T
df1

dT
=:

L

h(L) T L (12)

This sum expresses the number of polygons that exist and pass through the
origin.

The role of the phase factors is to provide the cancelation while the
restriction to self-avoidance is omitted, i.e. bonds may be traversed several
times.
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In Feynman's approach the following identification is made:

:
L

d(L) T L=(&1
2) :

L

1 (L) T L (13)

The sum on the right is the sum over all paths weighted with the loop-
phase factor, 1 (L)=>L

i=1 ,i . Here, the factor (&1
2) compensates for the

minus sign in the phase factor and the fact that each loop can be traversed
in two directions.

3. DEFINITION OF THE NARP MODEL

As has been mentioned in the foregoing section, it was possible to
obtain correct loop-counting for the two-dimensional Ising model by
including appropriate weightfactors to the loops. The weight factors for
each loop were constructed by including an element of U(1) to each point
along the path where a turn is made. Since a simple graph with four turns
of 90 degrees generates a phase factor &1, we keep in mind that in a two-
dimensional plane a loop corresponds to a full rotation, i.e. there is a
mapping of the phase factors into O(2). In order to define the NARP
model, we will use similar methods. In particular, for the generation of
loops in three dimensions, we use the fact that the group of rotations in R3

is locally isomorphic to the group SU(2). Therefore, for a loop in R3 we
will define a phase factor at each turn selected from SU(2).

Our starting point is the selection of a coordinate system in R3. We
choose a right-handed frame as is illustrated in Fig.1. A rotation of 90

Fig. 1. Right-handed coordinate system for the 3D lattice.
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Fig. 2. Simplest path in the Ising model which is essentially three dimensional.

degrees is defined to be positive if the corresponding cross product projected
on the axis of rotation is positive. In particular x̂_ŷ=ẑ corresponds to
a rotation of x̂ of 90 degrees around the z-axis, etc. The positive rotations
around the principal axes are illustrated in Fig.1. Let us consider a loop
in R3, which is essentially three-dimensional and which contains rotations
around all three axes. In Fig. 2 such a loop along the sides of a cube is
shown.

In each corner a phase factor is defined, which is taken from the group
SU(2) as follows:

v corner-1: positive rotation r+
z (%z)=exp(i(%z�2) _z)

v corner-2: positive rotation r+
x (%x)=exp(i(%x�2) _x)

v corner-3: negative rotation r&
y (%y)=exp(&i(%y�2) _y)

v corner-4: positive rotation r+
z (%z)=exp(i(%z�2) _z)

v corner-5: positive rotation r+
x (%x)=exp(i(%x�2) _x)

v corner-6: negative rotation r&
y (%y)=exp(&i(%y�2) _y)

For reasons of symmetry we assume that %x=%y=%z=%.
The phase factor for the loop of Fig. 2 is

1=r+
z r+

x r&
y r+

z r+
x r&

y (14)

The construction of the phase factors for the two-dimensional Ising model
satisfied the condition that a simple square generates a total phase factor
equal to &1. Since the planar loops form a subset of the total collection
of loops in the three dimensional lattice, we select %=?�2 for the simple
cubic lattice.
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The NARP model is defined as follows:

Rule 1. For each turning point of a polygon in the simple cubic
lattice, a phase factor is provided according to the following assignments:

v a counter clock wise rotation around the z-axis of 90 degrees in the
(xy)-plane: r+

z

v a clock wise rotation around the z-axis of 90 degrees in the (xy)-
plane: r&

z

v a counterclock wise rotation around the x-axis of 90 degrees in the
(yz)-plane: r+

x

v a clock wise rotation around the x-axis of 90 degrees in the (yz)-
plane: r&

x

v a counterclock wise rotation around the y-axis of 90 degrees in the
(zx)-plane: r+

y

v a clock wise rotation around the y-axis of 90 degrees in the (zx)-
plane: r&

y

Rule 2. After evaluation of the product of all phase factors, the
trace is taken divided by two, i.e. ,= 1

2Tr(6 N
i=1ri).

Rule 3. A phase factor |1� is assigned to a step straigth-on with |
a real positive constant.

Rule 4. A phase factor 0� is assigned to a U-turn.

Rule 5. For each link a factor T=tanh(K ) is inserted.

In order to evaluate an arbitrary chain of phase factors, it is interest-
ing to generate some tables for performing the calculations. Let us consider
the phase factor of Fig. 2. After application of rule no. 1, and the fact that
_i _j=i_k where (i, j, k)=(x, y, z): cyclic permutations, we obtain

1=( 1
2 (1+i_x&i_y+i_z))3 (15)

Introducing the specific SU(2) elements:

U= 1
2 (1+i_x+i_y+i_z)

X= 1
2 (1&i_x+i_y+i_z)

Y= 1
2 (1+i_x&i_y+i_z)

Z= 1
2 (1+i_x+i_y&i_z)
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we may use the Pauli matrices to write these elements as

U=
1
2 _

1+i 1+i
&1+i 1&i & (16)

X=
1
2 _

1+i 1&i
&1&i 1&i& (17)

Y=
1
2 _

1+i &1+i
1+i 1&i& (18)

Z=
1
2 _

1&i 1+i
&1+i 1+i& (19)

These matrices have the following properties:

U 2=&U -, X 2=&X -, Y 2=&Y -, Z2=&Z- (20)

Since 1=Y 3 we obtain 1=&1. So we managed to get the phase factor
&1 for a simple closed loop in three dimensions, analogously to the phase
factors that were used by Kac in two dimensions.

The multiplication table of the elementary phase factors r\
i , is found

in Table 1. Here we defined three matrices

7x=i_x , 7y=i_y , 7z=i_z

which have the property that 72
x=72

y=72
z=&1� .

In order to evaluate an arbitrary phase factor, Table 2 gives the multi-
plication rules for (U, X, Y, Z, U -, X -, Z-, 7x , 7y , 7z).

The finite subgroup of SU(2) that we are considering here, consists of
24 elements, being

_ 1, &1, U, &U, X, &X, Y, &Y, Z, &Z, U -, &U -,
X -, &X -, Y -, &Y -, Z-, &Z-, 7x , &7x , 7y , &7y , 7z , &7z& (21)

Table 1. Multiplication Table of the Elementary Phase Factors

Factor r+
x r+

y r+
z r&

x r&
y r&

z

r+
x 7x Z U 1 Y X -

r+
y U 7y X Y - 1 Z

r+
z Y U 7z X Z- 1

r&
x 1 X Z- &7x U - Y -

r&
y X - 1 Y Z- &7y U -

r&
z Z Y - 1 U - X - &7z
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Table 2. Multiplication Rules for (U, X, Y, Z, U �, X �, Z�, 7x,, 7y, 7z)

Factor U X Y Z U - X - Y - Z- 7x 7y 7z

U &U - 7y 7z 7x 1 Y Z X &Y - &Z- &X -

X 7z &X - Z- U Y - 1 7y &7x Y &U - &Z
Y 7x U &Y - X - Z- &7y 1 7z &X Z &U -

Z 7y Y - U &Z- X - 7x &7z 1 &U - &Y X
U - 1 Z- X - Y - &U &7z &7x &7y Z X Y
X - Z 1 7x &7z &7y &X U - Y &Z- Y - U
Y - X &7x 1 7y &7z Z &Y U - U &X - Z-

Z- Y 7z &7y 1 &7x U - X &Z X - U &Y -

7x &Z- Z &U - &X Y &Y - X - U &1 &7z 7y

7y &X - &Y X &U - Z U &Z- Y - 7z &1 &7x

7z &Y - &U - &Z Y X Z- U &X - &7y 7x &1

This subgroup can be obtained from the 3 generators [r+
x , r+

y , r+
z ].

Note that r&
i =(r+

i )7, and therefore does not correspond to an independent
generator.

We will now discuss the rule no. 2 and no. 3. In order to set up phase
factors for the solution of the two-dimensional Ising model, the phase fac-
tors for going straight-on was chosen to be simply one. However, we may
adapt this rule for setting up a new model. A few choices of | are now con-
sidered. Consider the loop, which is depicted in Fig. 3. The corresponding
phase factor 1 for the loop is:

1=r&
y r+

y r+
z r+

z runknownr+
z r+

x r&
y =7z runknownr+

z Y (22)

Fig. 3. Example of a path in the Ising model which contains a site where the path goes
straight on.
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If we choose runknown=1, then 1{&1. Alternatively, if we choose runknown

=r+
x , then

1=7zUY=7z7z=&1 (23)

The choice runknown=r&
x gives

1=7zZ-Y=7z(&7y)=&7x (24)

If we had selected runknown=r+
x for all straight-ons in the positive and

negative x-directions, we would not obtain a phase factor equal to &1, if
traversing the loop in the opposite direction. For the opposite traversal we
obtain &1 if we set runknown=r&

x . Since Tr7x, y, z=0, we adapt the fol-
lowing additional rules

v a step straight-on in the x-direction: r+
x +r&

x =- 2 1�

v a step straight-on in the y-direction: r+
y +r&

y =- 2 1�

v a step straight-on in the z-direction: r+
z +r&

z =- 2 1�

This corresponds to the choice |=- 2 in rule no. 3. In order to construct
the complete phase factor we can take the trace after multiplication of all
matrix insertions and multiply by (&1

2). In ref. 8, the Ising model is
approximated with the parameter |=1 for the straight-on rule.

Setting up phase factors for closed loops by applying the trace of
SU(2) elements was suggested by Polyakov and Dotsenko and further
exploited by Kavalov and Sedrakyan.(6) However, these authors consider
contours in three dimensional space, which have no torsion. Consequently,
their directions of research proceed according to the U(1) subgroup struc-
ture contained in SU(2), albeit in a three-fold replication.

It is also interesting to compare our proposition to the generalization
that was advocated by Kac and Ward. These authors generalized the
two-dimensional situation by stating that the next step of the walk on the
lattice can be one of five different cases, being (1) straight on, (2) turn to
the left, (3) turn to the right, (4) turn upwards and (5) turn downwards.
The meaning of the five cases is defined relatively to the bond on which one
is approaching the lattice site. Of course, such a local observer's point of
view differs considerably from the absolute frame view which we have
proposed here. Indeed Kac and Ward showed that their generalization ran
into conflictuous values of phase factors for non-planar loops.

4. THE RANDOM WALK APPROACH IN THREE DIMENSIONS

In this section we will mimic the calculation that Feynman performed
for the two-dimensional Ising model and extend it to three dimensions. The

399Non-Abelian Random Polygons



sum over all loops can be performed by solving a recurrent random-walk
problem.

Restarting from Eq. (8), the partition function becomes

Z=2NC 3N
0 :

L

d(L) T L (25)

Herein, d(L) is the number of closed loops of length L that can exist on the
cubic lattice. In order to perform the sum a specific point on the lattice is
chosen, the origin, and again from now on we will consider

Z1=:
L

d(L) T L (26)

The corresponding part of the free energy is related to Z1 by Z1=
exp(&;Nf1), i.e. the total free energy reads

f= f1&
1
;

log(2C 3
0) (27)

Since the free energy is proportional to the number of lattice sites. we may
consider f as the free energy per lattice site.

&;f1=:
L

h(L)
L

T L &;T
df1

dT
=:

L

h(L) T L (28)

where h(L) is the number of ways that one can return to the starting point
in L steps.

This last sum expresses the number of polygons that exist and pass
through the origin. The key ingredient in Feynman's approach is the
following identification:

:
L

d(L) T L=(&1
2) :

L

1
2Tr[1 (L)] T L (29)

The sum on the right is is the sum over all paths weighted with the loop
amplitude. Here, the factor (&1

2) compensates for the minus sign in the
phase factor and the fact that each loop can be traversed in two directions.
The other factor 1

2 compensates the Tr 1=2 evaluation. Summarizing, we
have generalized the Feynman conjecture as follows:

Z=2NC 3N
0 Z1 (30)

Z1=exp(&;Nf1) (31)

&;f1(T )=|
T

0
dt \&

1
4t+{:

L

Tr1 (L) tL= (32)
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Let us now evaluate the 2_2 matrix A(t)

A(t)=:
L

1 (L) tL (33)

Following the method of Feynman we need to introduce the directional
transition amplitudes for arriving in a lattice site r� =(x, y, z) after n steps:

�n(r� )=\
Un(x, y, z)

+ (34)

Dn(x, y, z)
Rn(x, y, z)
Ln(x, y, z)
Bn(x, y, z)
Fn(x, y, z)

The amplitudes are defined as follows:

v U: moving upwards, i.e. along the z+ direction

v D: moving downwards, i.e. along the z& direction

v R: moving to the right, i.e. along the x+ direction

v L: moving to the left, i.e. along the x& direction

v B: moving to the back, i.e. along the y+ direction

v F: moving to the front, i.e. along the y& direction

This gives rise to the following recursion relations:

U(n+1)(x, y, z)=|1� TUn(x, y, z&1)+r&
y TRn(x, y, z&1)

+r+
y TLn(x, y, z&1)+r+

x TBn(x, y, z&1)

+r&
x TFn(x, y, z&1)

D(n+1)(x, y, z)=|1� TDn(x, y, z+1)+r+
y TRn(x, y, z+1)

+r&
y TLn(x, y, z+1)+r&

x TBn(x, y, z+1)

+r+
x TFn(x, y, z+1)

R(n+1)(x, y, z)=r+
y TUn(x&1, y, z)+r&

y TDn(x&1, y, z)

+|1� TRn(x&1, y, z)+r&
z TBn(x&1, y, z)

+r+
z TFn(x&1, y, z)
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L(n+1)(x, y, z)=r&
y TUn(x+1, y, z)+r+

y TDn(x+1, y, z)

+|1� TLn(x+1, y, z)+r+
z TBn(x+1, y, z)

+r&
z TFn(x+1, y, z)

B(n+1)(x, y, z)=r&
x TUn(x, y&1, z)+r+

x TDn(x, y&1, z)

+r+
z TRn(x, y&1, z)+r&

z TLn(x, y&1, z)

+|1� TBn(x, y&1, z)

F(n+1)(x, y, z)=r+
x TUn(x, y+1, z)+r&

x TDn(x, y+1, z)

+r&
z TRn(x, y+1, z)+r+

z TLn(x, y+1, z)

+|1� TFn(x, y+1, z)

Using Fourier transforms of the amplitudes according to

Un(x, y, z)=
1

(2?)3 |
2?

0
|

2?

0
|

2?

0
d! d' d& Un(!, ', &) exp(i!x+i'y+i&z) (35)

and

Un(!, ', &)= :
�

x=&�

:
�

y=&�

:
�

z=&�

Un(x, y, z) exp(&i!x&i'y&i&z) (36)

and similar transforms for the other directional amplitudes, we obtain

�(n+1)(!, ', &)=T C M�n(!, ', &) (37)

The matrix M is given by

M=_
|1� e&i& 0 r&

y e&i& r+
y e&i& r+

x e&i& r&
x e&i&

& (38)

0 |1� ei& r+
y ei& r&

y ei& r&
x ei& r+

x ei&

r+
y e&i! r&

y e&i! |1� e&i! 0 r&
z e&i! r+

z e&i!

r&
y ei! r+

y ei! 0 |1� ei! r+
z ei! r&

z ei!

r&
x e&i' r+

x e&i' r+
z e&i' r&

z e&i' |1� e&i' 0
r+

x ei' r&
x ei' r&

z ei' r+
z ei' 0 |1� ei'

The solution for � becomes

�n(!, ', &)=(T C M )n �0(!, ', &) (39)
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With the use of this result into A(t) we obtain

A(t)=:
L

1 (L) tL

=Tr
1

(2?)3 |
2?

0
|

2?

0
|

2?

0
d! d' d& tr \ :

�

n=1

(tM )n+
=

1
(2?)3 |

2?

0
|

2?

0
|

2?

0
d! d' d& Trtr \ 1

1&tM
&1+ (40)

After substitution we obtain

&;f1(T )=
1

25?3 |
2?

0
|

2?

0
|

2?

0
d! d' d& Trtr log(1&T C M )

=
1

25?3 |
2?

0
|

2?

0
|

2?

0
d! d' d& log det(1&T C M ) (41)

We can now substitute the rotation matrices for the evaluation of the deter-
minant. The generic matrix, Q, of which the determinant needs to be
evaluated is

Q=

: 0 0 0 1 &1 1 1 1 i 1 &i
0 : 0 0 1 1 &1 1 i 1 &i 1
0 0 :* 0 1 1 1 &1 1 &i 1 i
0 0 0 :* &1 1 1 1 &i 1 i 1
1 1 1 &1 ; 0 0 0 (1&i) 0 (1+i) 0

&1 1 1 1 0 ; 0 0 0 (1+i) 0 (1&i)
1 &1 1 1 0 0 ;* 0 (1+i) 0 (1&i) 0
1 1 &1 1 0 0 0 ;* 0 (1&i) 0 (1+i)
1 &i 1 i (1+i) 0 (1&i) 0 # 0 0 0

&i 1 i 1 0 (1&i) 0 (1+i) 0 # 0 0
1 i 1 &i (1&i) 0 (1+i) 0 0 0 #* 0
i 1 &i 1 0 (1+i) 0 (1&i) 0 0 0 #*

(42)
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In this matrix, :, ;, # are complex numbers and :*, ;*, #* their complex
conjugates. At first sight this matrix looks deterrent for calculating the
determinant. However, by setting

:=a+ib, ;=c+id, #=e+if

and using computer algebraic software, e.g. ``Mathematica,''(14) the deter-
minant can be easily computed. The result is

det(Q)=[&256+16 } (a2+b2+c2+d 2+e2+ f 2)

+32 } (ac+ae+ce)

&8 } [(a2+b2) } ce+(c2+d 2) } ae+(e2+ f 2) } ac]

+(a2+b2) } (c2+d 2) } (c2+ f 2)]2 (43)

After substitution of the actual values for :, ;, #, i.e.

:=- 2 \|&
ei&

T + ;=- 2 \|&
ei!

T + :=- 2 \|&
ei'

T + (44)

we arrive at the main result of this paper, being that the Helmholtz free
energy per spin, f (T ), for the NARP model is

&;f (T )=log(2C 3
0)+

1
24?3 |

2?

0
|

2?

0
|

2?

0
d! d' d& log[T 6 |G(!, &, ')|] (45)

with u=1�|T

G(!, &, ')=&32+36|2&12|4+|6

+(&24|2+16|4&2|6) Au

+(12|2&12|4+3|6+(8|2&20|4+4|6)B) u2

+((8|4&4|6)A+(24|4&8|6)C) u3

+(3|6&(4|4&4|6)B) u4&2|6Au5+|6u6 (46)

and setting cos !=x, cos &= y, cos '=z and

A(x, y, z)=x+ y+z

B(x, y, z)=xy+ yz+zx (47)

C(x, y, z)=xyz.
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5. FURTHER ANALYSIS OF THE HELMHOLTZ FREE ENERGY

In order to study the critical points it is required to sort out for which
values of K the function G vanishes. These points correspond to non-
analytic behaviour of the Helmholtz free energy, and consequently we may
expect phase transitions to occur for these values. In this section, we will
study the case |=- 2. This value corresponds to a unit normalization of
the loop phases.

Let us rewrite the integral as a multiple integral from &1 � 1. After
rearranging various terms, we may separate f into its analytic and non-
analytic parts:

&;fA(T )=
5
2

log 2+3 log sinh K (48)

&;fNA(T )=
1

2?3 |
1

&1
|

1

&1
|

1

&1

dx

- 1&x2

dy

- 1& y2

dz

- 1&z2
log |G(x, y, z; u)|

(49)

whereas here G(x, y, z; u) is a polynomial in x, y, z and u.

G(x, y, z; u)=u2(u4&2Au3+(3+2B) u2+4Cu&4B) (50)

The structure of the surface G(x, y, z; u)=0 can be visualized by scanning
the cube &1�x, y, z�1 for each value of u. Such a graphical analysis can
be done by solving explicitly for one of the variables. For instance, an
explicit solution for z is given by

z(x, y; u)=
u4+3u2&2u3(x+ y)+(2u2&4) xy

2u3&2(u2&2)(x+ y)&4uxy
(51)

The following results are obtained:

v u>3: There are no points in the cube such that G=0. For these
values of u there is no critical behaviour.

v u=3: Merely the point (x, y, z)=(1, 1, 1) corresponds to G=0.

v 2<u<3: There is surface in the upper tip of the cube for which
G=0. In Fig. 4 the surface for u=2.5 is shown.

v u=2: The edges (x=1, y=1), ( y=1, z=1) and (x=1, z=1)
correspond to G=0.

v 1<u<2: In Fig. 5 the surface for u=1.2 is shown.
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File: 822J 225418 . By:XX . Date:16:12:98 . Time:13:58 LOP8M. V8.B. Page 01:01
Codes: 1092 Signs: 537 . Length: 44 pic 2 pts, 186 mm

Fig. 4. Upper corner of the cube showing the surface on which G=0. This figure
corresponds to u=2.5.

v u=1: The point (x, y, z)=(&1, &1, &1) also gives G=0, The sur-
face and the isolated point (x, y, z)=(&1, &1, &1) are shown in Fig. 6.

v 1�- 2<u<1: The surface G=0 is shown in Fig. 7 for u=0.85.

v u�1�- 2: This case is not relevant since it corresponds to T�1.

Fig. 5. Upper corner of the cube showing the surface on which G=0. This figure
corresponds to u=1.2. The steep rim corresponds to (x, y)-values for which z is indefinite.
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Fig. 6. Upper corner of the cube showing the surface on which G=0. This figure
corresponds to u=1.0. The steep rim corresponds to y=x+1�2x&1 for which z is indefinite.

Fig. 7. Upper corner of the cube showing the surface on which G=0. This figure
corresponds to u=0.85. The steep rim corresponds to (x, y)-values for which z is indefinite.
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The transition point from non-critical behaviour to critical behaviour
is found at u=3. This value corresponds to T=1�3 - 2=0.235702. Since
T=tanh(K ) the critical value for K is3

K*=0.2402186.. (52)

It is worthwhile to compare the structure of the function G(x, y, z; u) with
the function that one encounters for the two-dimensional Ising model. For
the latter case one obtains with u=sinh(2K ) (5)

G(x, y, u)=u+
1
u

&(x+ y) &1�x, y�1 (63)

The only point in the (x, y)-plane for which G=0, is (x, y)=(1, 1). In our
result, K* is not an isolated zero point of G in the integration domain but
the onset of an interval [K*, �), i.e. for these values of K, there are always
points, lines or surfaces for which the function G vanishes. Naively one
might expect that the NARP model remains in a critical state from zero
temperature up to TC=K*�kB , but this is not the case. A formal argument
for understanding the regular behaviour of the Helmholtz free energy,
despite the appearance of zeros in the integrand is given by extending an
observation of Green and Hurst for the 2D Ising model.(10, 11) The free
energy is written as a triple contour integral

&;f&
1
i 3 �

C1
�

C2
�

C3

dz1

z1

dz2

z2

dz3

z3

G(z1+z&1
1 , z2+z&1

2 , z3+z&1
3 ; u) (53)

A singularity can in general be easily avoided by changing the integration
path, unless a pinching of the contours occurs from opposite sides.

In Fig. 8, the free energy of the NARP model is plotted. The result is
obtained by numerical integration. and in Fig. 9, the first derivative is
plotted. The derivative is obtained by numerical differentiation of the free
energy, using a five-point interpolation scheme.

Since the free energy is explicitly known, it should be possible to
obtain the behaviour of some observables around the transition tem-
perature. Though being inspired by the Ising model, the NARP model is
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3 This value can be compared with numerical results obtained from numerical renormalization
group methods, (15) which give values around 0.25. A method based on numerically estimating
the partition function(16) gives a value around 0.24. Therefore, the older calculations suggest
that we may actually have a solution to the 3D Ising model. However, more recent calcula-
tions contradict with this conclusion(9) therefore the NARP model is not equivalent to the
3D Ising model.
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Fig. 8. Free energy of the NARP model.

Fig. 9. First derivative of the free energy of the NARP model.
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not defined in terms of spins but in terms of random polygons. Therefore,
we will not deal with observables which correspond to magnetization. The
specific heat is a candidate for further studying the singular behaviour. The
internal energy per site, w, is

w=
�

�;
(;f ) (54)

and the heat capacity per site is

c=kB;2 �2

�;2 (&;f ) (55)

After substitution of the results we obtain the following expression for the
specific heat per site

c
kB

=K2(1&|2u2) \&2u
�f�
�u

+\ 1
|2&u2+ �2f�

�u2+ (56)

and f� (u)=&;f (u(T )) is given in Eq. (45). The three-fold integration in the
expression for the Helmholtz free energy complicates the isolation of the
asymptotic behaviour considerably. In particular, the familiar arguments
from the 2D Ising model, which exploit properties of the elliptic integrals
or hypergeometric functions cannot be transposed to our situation. There-
fore, we will be using somewhat more heuristic arguments. The non-
analytic behaviour of the Helmholtz free energy is determined by the
behaviour around (x, y, z)& (1, 1, 1) for u above uc .

We will analyze the case |=- 2, but this is not essential. Further-
more we consider the upper right corner of the integration domain and
return back to the variables !, & and '. By using a Taylor expansion of the
functions A, B and C, we obtain that

r2=!2+&2+'2

A=3& 1
2r2

(57)
B=3&r2

C=1& 1
2r2

and with r0&O(2?) some upper bound for the integration domain,

f� NA &|
r0

0
r2 dr log |G(r2, u)| (58)

410 Schoenmaker and Magnus



with

G(r2, u)=u2(u4&(6&r2) u3+(9&2r2) u2+(4&2r2) u+4r2&12) (59)

We can rewrite G as

G(r2; u)=a(u) r2+b(u)

a(u)=u2(u3&2u2&2u+4)

b(u)=u2(u&3)(u3&3u2+4)

The nature of the singularity around uc=3, can be derived from the
following integral result

f� NA &|
r0

0
r2 dr log |G(r2, u)|

=
1
3

r3
0 log(ar2

0+b)&
2
9

r3
0+

2
3

b
a

r0

+{
1
3 \

|b|
a +

3�2

log \r0+- |b|�a

r0&- |b|�a +
&

2
3 \

b
a+

3�2

arctan \ r0

- b�a+

if b<0

if b>0

Although the zero of G is in the integration domain for u<3, the result is
regular. In particular, we obtain the following nature of the singularity for
the specific heat c around the critical point K*

c&{
constant if K>K*

(60)1

- K*&K
if K<K*

6. COMPARISON WITH RELATED WORK

The hunt for a polynomial expression in the integrand of the free
energy of the simple cubic Ising model, the so-called critical polynomial, has
been ongoing, since the discovery of the Onsager solution for the two
dimensional Ising model. A recent status has been presented by Fisher.(17)

In that work a warning is placed that such a polynomial may not even
exist, since a mere matching of the value of K* is not sufficient for having
obtained a solution of the 3D Ising model.
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A polynomial of the type in the foregoing section has been proposed
by He, Xu and Hao. Their approximation of the 3D-Ising model
corresponds to |=1 in our work. In this case, we obtain

G(x, y, z; u)=u6&2Au5+3u4+(4A+16C )u3+(3&8B)u2&10Au&7

(61)

The onset of critical behaviour takes place for x= y=z=1. This results
into the following equation for u.

G(1, 1, 1; u)=((u&1)2&2)2 ((u&1)2&8)=0 (62)

The positive roots of this equation are u1*=1�T 1*=1+- 2 and u2*=
1�T 2*=1+2 - 2. and correspond to Tc=0.4142 and Tc=0.2612. The
values have also been reported in ref. 8.

Noting that if | becomes larger, then T* becomes smaller, we have
obtained a closed-form relation of T*(|) from the root-equation, which is
obtained from Eq. (46)

(|2u2&2|2u+|2&8)(|2u2&2|2u+|2&2)2=0 (63)

The result is

T*=
1

|\2 - 2
T*=

1

|\- 2
(64)

In particular, the choice |=- 3, gives T*=0.2192753, whereas the
Ferrenberg�Landau (FL) value is T*=0.2180992\0.0000025. An over-
view of some ``special'' values for | is given in Table 3. Of course, so far,
any deeper motivation for choosing one of these values is lacking. More-
over, although numbers like - 3 or - ? are close to |FL , they fall outside
the error bars.

Table 3

| K* T* Model

- ?&1.77 0.2208726 0.2173497

1.75664259 0.2216595(26) 0.2180992(25) FL

- 3&1.73 0.2228946 0.2192753

- 2 0.2402186 0.2357023 this work

1 0.2674000 0.2612039 He, Xu, Hao
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7. CONCLUSIONS

We have followed Feynman's method to construct a model in statisti-
cal physics using non-abelian phase factors for turning points in random
polygons. The model is exactly solvable, and the free energy is analysed in
detail. The essential part in the calculation consists of identifying the sum
over all graphs corresponding to an unconstrained random walk problem
with complex weights. The model exhibits an asymmetric phase transition
point.

Our result may contribute to a better understanding of random-walk
problems in three dimensions with non-abelian transition amplitudes, since
an explicit solution for such a model has been constructed.
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